What is the myocardial implication in RAAS-regulated hypertension? A closer look at the NKA, NCX and Ca\(^{2+}\) reuptake machinery in the left ventricular myocytes.

Rachel Byrum\(^1\), BS, Berwin Singh Swami Vetha\(^2\), PhD, and Azeez Allenu\(^2\), PhD; FAHA

Department of Biology, Thomas Harriot College of Arts & Sciences\(^1\), Foundational Sciences & Research, ECU School of Dental Medicine\(^2\), Greenville, North Carolina, United States

Abstract

Introduction: Renin Angiotensin-Aldosterone System (RAAS), a hormonal system that regulates fluid retention, sodium-potassium, volume homeostasis and blood pressure. Objective: The present study characterizes circulation of RAAS in (mRen2)27 transgenic model of hypertension, to understand the machinery for cardiac excitation-contraction coupling and arrhythmias in RAAS-regulated high blood pressure. Methods: Analysis of cardiomyocytes showed imbalance in the expression of RAAS receptors (AT\(_R\), AT\(_R\) and MAS), Na\(^+\)/K\(^+\) ATPase (NKA) pump, Na\(^+\)/Ca\(^{2+}\) exchanger (NCX) system and alteration of intracellular Ca\(^{2+}\). Results: Protein expression for AT\(_R\), AT\(_R\) and Ang1.7-mediated-MAS receptors were significantly reduced in the cardiomyocytes of (mRen2)27. The relevant role of NKA and NCX in Na\(^+\) homeostasis was hypothesized that an increase in NKA isoforms (c1 & c2) would suggest a surge in the NCX exchanger to maintain Na\(^+\) influx in cardiomyocytes. The protein expression of the NKA isoforms in the left ventricular myocytes suggests a two-fold increase in (mRen2)27. Further, RT-PCR showed that there is a decrease in mRNA profile for sarco/endo-plasmatic reticulum Ca\(^{2+}\)-ATPase (SERCA) Atp2c-2, suggesting a decrease in the slow twitch of Ca\(^{2+}\) reuptake in sarcoplasmic reticulum which results in an increased intracellular Ca\(^{2+}\) and cardiac excitation-contraction coupling in the hypertensive rodents. Conclusion: The data suggests that the optimum role of NKA, NCX and SERCA, in handling of Na\(^+\) and Ca\(^{2+}\) in ventricular myocytes, is different in RAAS-induced hypertension.

Results

![Image of results](image)

Figure 2: Protein expression of RAAS receptors A) AT\(_R\), B) AT\(_R\) and C) MAS profile in the Heart Left Ventricles (LV) normalized to β-actin protein expression and expressed as intensity ratios compared to SD. Protein expression results suggest a three-fold increase in mRen2-AT\(_R\). There was a three-fold decrease in AT\(_R\) and twofold decrease of MAS in the hRen2 transgene.

Figure 3: Protein expression of Na\(^+\)K\(^+\) transporter subunits A) alpha 1 and B) alpha 2 profile in the Heart Left Ventricles (LV) normalized to β-actin protein expression and expressed as intensity ratios compared to SD. Protein expression results suggest a twofold increase in mRen2-AT\(_R\) alpha 1. There was a three-fold increase of Na\(^+\)K\(^+\) alpha 2 in the hRen2 transgene.

Figure 4: RT-PCR expression of mRNAs. Relative gene expression of A) MAS and B) Slc8a1 profile. mRNA for MAS is significantly lower in LV of animal compared to control (*p-value 0.0222) whereas one-fold increase of Slc8a1. (mRen2)27 transgenic hypertensive

Methods

Blood pressure was recorded using NIBP to determine baseline blood pressures for normotensive and hypertensive animals.

Western Blot was used to visualize and quantify protein expression of RAAS receptors, Na\(^+\)/K\(^+\) ATPase (NKA) pump, Na\(^+\)/Ca\(^{2+}\) exchanger (NCX).

RT-PCR was used to determine mRNA values for MAS, NCX, SERCA, and AT2R.

Discussion

* Protein expression for AT\(_R\), AT\(_R\) and Ang1.7-mediated-MAS receptors were significantly reduced in the cardiomyocytes of (mRen2)27.
* The protein expression of the NKA isoforms in the left ventricular myocytes show a two-fold increase in (mRen2)27.
* mRNA expression for MAS shows a significant decrease in (mRen2)27.
* mRNA profile for NCX reveals a twofold increase.
* Further, there is a decrease in the sarco/endo-plasmatic reticulum Ca\(^{2+}\)-ATPase (SERCA) in mRNA.

Conclusions

* The relevant role of NKA and NCX in Na\(^+\) homeostasis was hypothesized that an increase in NKA isoforms (c1 & c2) would suggest a surge in the NCX exchanger to maintain Na\(^+\) influx in cardiomyocytes.
* The decrease in SERCA slow twitch would suggest that, in long term hypertension, Ca\(^{2+}\) is remaining in the cytoplasm causing increased contractility in cardiomyocytes.
* The data suggests that the optimum role of NKA, NCX and SERCA in handling of Na\(^+\) and Ca\(^{2+}\) in ventricular myocytes is different in RAAS-induced hypertension.

Acknowledgements

* Dr. Azeez Allenu, PI
* Dr. Barwin Singh, Post Doc

Follow our work on ResearchGate