Sinus Floor Augmentation Using a Combination of Anorganic Bovine Bone with Demineralized Cortical Allograft Fibers or Granules: A Case Series.

Alex Gillone, DDS, MS,¹ Acela Martinez Luna, DMD, MS,¹ David W. Paquette, DMD, MPH, DMSc¹

¹ Division of Periodontology, Department of Surgical Sciences, Greenville, North Carolina, United States

Introduction

Augmentation of the maxillary sinus floor (SFA) is a commonly used surgical procedure to increase bone volume prior to implant placement in the posterior maxilla. Various bone grafting materials (autogenous, allograft and xenograft) or bone substitutes have been used alone or in combination to achieve this goal. ¹,² We present a series of cases where a combination of cancellous anorganic bovine bone with either demineralized cortical allograft fibers or demineralized cortical allograft granules, was used for a staged or simultaneous implant placement approach. Subsequently, a porcine collagen membrane was used to cover the access window.

Cases

Case 1. Fifty-one-year-old female patient, needing implant #14. Patient has history of controlled hypertension. Used a staged approach. Sinus graft material: demineralized cortical allograft fibers + cancellous anorganic bovine bone (20:80 ratio) and porcine collagen membrane to cover the window. Implant placement at 6 months of healing.

Case 2. Sixty-seven-year-old female patient, needing implant #14. Patient has history of controlled hypertension and diabetes, and osteoporosis. Used a staged approach. Sinus graft material: demineralized cortical allograft fibers + cancellous anorganic bovine bone (20:80 ratio) and porcine collagen membrane to cover the window. Implant placement at 6 months of healing.

Case 3. Sixty-three-years-old female patient, needing implants #3, 4, 13, 14. Patient has history of controlled hypertension and hypothyroidism, and arthritis. Used a simultaneous approach (sinus floor augmentation with implant placement) with contour ridge augmentation bilaterally. Sinus graft material: demineralized cortical allograft granules + cancellous anorganic bovine bone (50:50 ratio) and porcine collagen membrane to cover the window and graft. Used a porcine, porous, resorbable and volume-stable collagen matrix for soft tissue regeneration, during second stage surgery for maxillary left implants.

Discussion

The main benefits of using this mixture are the osteoinductive and osteoconductive properties of the demineralized allograft and xenograft material, respectively.²,³ Furthermore, the xenograft material helps in preserving the volume, with no inflammatory or adverse responses, while the demineralized allograft aids restoring vital bone at a faster rate.²,⁴ Finally, this combination could avoid the need for an autogenous bone graft, hence decreasing morbidity.

Conclusions

These cases demonstrate the clinical application of this combination as well as a successful outcome. Studies investigating the histological and ultrastructural properties are needed in the future.

Acknowledgements

The authors would like to thank the East Carolina School of Dental Medicine staff and faculty for their continuous support.

References